
Communication Patterns

Rolf Riesen

Sandia National Laboratories∗

P.O. Box 5800
Albuquerque, NM 87185-1110

rolf@cs.sandia.gov

Abstract

Parallel applications have message-passing patterns
that are important to understand. Network topology, rout-
ing decisions, and connection and buffer management need
to match the communication patterns of an application for it
to run efficiently and scale well. These patterns are not eas-
ily discerned from the source code of an application, and
even when the data is available it is not easy to categorize
it appropriately such that meaningful knowledge emerges.

We describe a novel system to gather the information we
need to discover an application’s communication pattern.
We create five categories that help us analyze that data and
explain how information from each category can be useful
in the design of networking hardware and software. We use
the NAS parallel benchmarks as examples on how to apply
our techniques.

1 Introduction

A message-passing application uses point-to-point and
collective operations to communicate among the nodes it
is running on. Which nodes send messages to what other
nodes, how often, and containing how much data depends
on the algorithm implemented by the application, and some-
times on the input and setup of the application. Knowing
these communication patterns is important for application
developers and designers of networks and communication
software stacks. It is also important for purchasers of paral-
lel machines, so they can make decisions about which topol-
ogy and network technology will best fit their applications.

In this paper we describe a novel method to gather the
kind of information we are interested in. With data gath-
ered from the NAS parallel benchmarks [1] we show how

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

to present that data to make understanding easier, and pro-
vide examples of hardware and software design areas where
that information can be useful.

The tool we use to collect the data is an early prototype
of a network simulator. The application executes directly,
the code is not simulated, but events sent between the appli-
cation and the network simulator let the simulator observe
and record all message traffic.

We use the NAS parallel benchmarks to demonstrate the
technique and present a sample set of measurements. There
are eight benchmarks that make up the NAS parallel bench-
marks suite: BT, CG, EP, FT, IS, LU, MG, and SP. Pro-
cessing power and memory sizes of modern supercomputers
have been increasing. The work a benchmark does on each
node had to increase for it to remain a true test of parallel
computer performance. Therefore, the benchmarks come
in classes. Among the parallel versions, class A has the
smallest requirements, while class B is a little bit more de-
manding, and class C requires significant amounts of mem-
ory, processing power, and communication capabilities to
complete within a reasonable time. There are a few other
classes, such as W for work stations, but for this paper we
will limit ourselves to classes A, B, and C.

Due to the particular algorithms used, most of the NAS
parallel benchmarks require a square or power of two num-
ber of nodes to run on. For this paper we ran experiments
on 4, 16, and 64 nodes. While these are not large sizes given
today’s state-of-the-art clusters and parallel machines, it is
enough to illustrate the kinds of measurements we are inter-
ested in.

Presenting graphs of all measurements for all classes and
sizes would fill tens of pages. Therefore, we will select
some of the more interesting ones and show them to illus-
trate our measurements. The complete set is available in [5].

This paper makes two main contributions: it describes a
novel method for gathering the necessary data from a run-
ning application and provides a method to present and eval-
uate that data. We use the NAS parallel benchmarks as well

known parallel applications to demonstrate our methods.
Our simulator approach is interesting because instrumen-
tation of the applications is trivial, the simulator does not
change the perceived running time of the application, and in
the future our tool will be able to gather additional data to
what we present in this paper. Examples include intrusion-
free MPI traces and the ability to change the performance
characteristics of the network.

We also list why the particular measurements we have
taken are of interest to hardware and system software de-
signers. While no machine will be built to run the NAS
parallel benchmarks efficiently, those benchmarks do repre-
sent a certain class of applications, and the method used to
gather the results for this paper, can also be used to gather
similar data from more important applications.

In the next section we describe the experimental setup
that we used to obtain our measurements. We present the
data in Section 3 in an easy to understand and compact for-
mat. We also provide information why having that informa-
tion is important. In the related work section (Section 4),
we look at earlier methods for collecting data and explain
how our approach differs. We close the paper in Section 5
with a summary and some work we are planning to do in
the future.

2 Experimental setup

We obtained the measurements presented in Section 3
using an early prototype of a supercomputer simulator. The
only thing it simulates so far is a very simplistic network
model similar to the formulaL+s/B, whereL is the latency,
B is the bandwidth, ands is the size of the message. The
parametersL andB were chosen to mimic the zero-length
latency and asymptotic bandwidth of our test system.

In addition to calculating a delay based on message
length, the simulator also keeps track of the source and des-
tination of each message, whether it was sent point to point
or as part of a collective operation, and how many bytes
were sent. When the application ends, the simulator prints
all that information to the screen.

Figure 1 shows how the network simulator is organized.
The application is directly executed. That means it runs
as it would without the simulator present and uses the stan-
dard network and MPI protocol stack to exchange data. The
simulator runs on one additional node. That is, if the ap-
plication requires 16 nodes, we need 17 nodes to run the
experiment.

Using the MPI profiling interface, the application sends
an event to the simulator node for each MPI send, telling
it about the length, tag, and destination of that send. The
event also contains the current virtual timetx (see Figure 2
and [3]). In each blocking receive or wait function, the ap-
plication waits for the MPI message and an event from the

Figure 1. Data and event traffic

simulator. The dark arrow in Figure 1 from node 1 to node 3
shows an MPI message traveling through the standard MPI
stack and network. In addition, the sender (node 1) sends
an event to the network simulator (dashed arrow). When
node 3 receives the MPI message, it will not proceed until it
has also received an event from the network simulator (sec-
ond dashed arrow). The pseudocode in Figure 2 illustrates
the send of an MPI message, and Figure 3 shows the recep-
tion of an MPI message usingMPI Recv(). Similar stubs
exist for the other blocking MPI receive and wait functions.

int MPI Send(...) {
tx= get vtime();
PMPI Send(....); // Send the data
sendevent (tx, ...); // Send event to sim

}

Figure 2. Stub code example for MPI Send()

int MPI Recv(...) {
t1= get vtime();
PMPI Recv(....); // Receive the data
t2= get vtime();
wait event (&tx, &∆, ...); // Wait for the sim
if (tx +∆ > t1)

t3= tx +∆;
else

t3= t2;
set vtime (t3); // Adjust virt . time

}

Figure 3. Stub code example for MPI Recv()

The sender in Figure 2 records the virtual timetx at the
start of the send. It packs that information, together with the

length of the message, the tag, and the destination, into an
event to the simulator.

On the receive side, upon entering a blocking MPI re-
ceive or wait function, the application records the current
virtual time t1. It then calls the MPI library to receive the
data, and waits for an event from the simulator node. For
each message the simulator calculates a delay∆ based on
the length of that message, and sends∆ to the receive node.
It also sends the correspondingtx it has received from the
sender, to the receiver.

When a node receives an event from the simulator, it
does a simple calculation to determine whether that mes-
sage arrived before it started to wait for it (t1) or after. If
it is the latter, it synchronizes its virtual time to that of the
sender, taking the delay the network simulator provided into
account:tx +∆. If the message was sent before the receiver
enteredMPI Recv(), tx +∆ < t1, then the virtual time is set
to t2, which excludes the wait for the event.

This mechanism synchronizes the virtual clocks on each
application node with the other nodes it communicates with.
It also allows the simulator to be arbitrarily slow without the
application noticing it. The virtual time between entering a
blocking MPI receive or wait function and when that func-
tion returns, is just the delay the simulator calculated. The
benchmarks we ran for this paper report the same execution
time when run with or without our simulator. That is be-
cause we changed theMPI Wtime() function to return the
virtual time.

The only change we had to make to the application
source code was to rename themain() function of the
IS benchmark and replace the keywordprogram with
subroutine in the Fortran benchmarks. This is necessary
so the simulator can setup MPI communicators before it
starts the benchmark. The simulator code and the bench-
mark are then linked together with our library that provides
stubs for all of the MPI functions. Send function stubs trans-
mit the data to the destination node, and an event to the sim-
ulator (Figure 2). Blocking receive and wait function stubs
contain the code that is described in Figure 3. All stubs con-
tain a statement that replaces theMPI COMM WORLD commu-
nicator of the application with one that the simulator created
before the application started (app communicator in Fig-
ure 1). The application uses it, through the stub library, to
send and receive its MPI messages.MPI COMM WORLD con-
tains all nodes and is used for the transmission of events
between the simulator and the application.

The idea of running a network simulator on a separate
node that can, through events, control the message passing
of an application has two advantages. The stub library takes
up only a very small amount of extra code space; all the data
is collected on the simulator node. That means even appli-
cations and data sets that use all of the physical memory
on their node can be instrumented and evaluated. Second,

the time required to gather and possibly filter, analyze, and
save the data on the simulator node, does not affect the vir-
tual time of the application nodes.

For this paper we use only statistics gathered by the sim-
ulator that are not time dependent. Although adjusting and
synchronizing the virtual time on the nodes of the applica-
tion seems to work (the benchmarks report the same execu-
tion time as when run natively), we have not done enough
testing and validation on this early prototype to report re-
sults.

We ran our experiments on a 256-node Myrinet cluster
with dual 3 GHz Intel Xeon CPUs. Each node has 4 GB of
memory.

3 Measurements

In this section we define five measurements that are of
interest when analyzing communication patterns. For each
of these measurements we describe what they are, how they
have been obtained, and we make some suggestions on why
a particular measurement is important in communication
software and hardware design or purchase decisions.

3.1 Message density distribution

Knowing which nodes in an application communicate
with what other nodes is important for several reasons. In
connection oriented networks this knowledge can help with
strategies to manage open connections. It also relates to the
topology the application runs on. More efficient routing,
node allocation, and node numbering algorithms may exist
for a given communication pattern. Optimizations to min-
imize hot spots in the network may also benefit from this
analysis.

We gather this information by counting each message
and storing that counter in a two-dimensional array indexed
by source and destination. Figure 4 shows CG on 4 nodes
and Figure 5 shows it on 16 nodes. The darker a rectan-
gle in the graph is, the more messages were sent between
the corresponding source and destination node. White indi-
cates that no communication (or a minuscule amount) has
taken place between those two nodes.

In the case of CG running on 4 nodes, the light gray in-
tensity at coordinate 0, 0 indicates that node 0 sends some
messages to itself (416), while the large majority (1265)
go to node 1. Node 0 sends one message each to nodes 2
and 3, but that is not enough to show up as a distinguishable
gray level in Figure 4. Running CG on 16 nodes makes it
very clear in Figure 5 that most of the messages are sent
among nodes that are close to each other in MPI’s logi-
cal node numbering scheme: most messages are exchanged
among nodes 0 through 3, 4 through 7, 8 through 11, and 12
through 15 respectively.

 0
 200
 400
 600
 800
 1000
 1200
 1400

m

es
sa

ge
s

Destination Node

S
ou

rc
e

N
od

e

 0 1 2 3
 0

 1

 2

 3

Figure 4. CG message density distribution

 0
 200
 400
 600
 800
 1000
 1200
 1400

m

es
sa

ge
s

Destination Node

S
ou

rc
e

N
od

e

 0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

Figure 5. CG message density distribution

The network simulator counts point-to-point messages
as well as messages that are part of collective operations.
That means that a broadcast and reduce operation originat-
ing at node 0 will show up as a band in row 0 and column 0,
indicating that node 0 has sent messages to all other nodes
and received messages back from all of them. An example
of this is shown in Figure 6 for the FT, and in Figure 7 for
the IS benchmarks.

In reality, the underlying broadcast is probably using a
fan-out tree algorithm in which nonleaf nodes in the tree
pass messages further down the tree. This cannot be de-
tected by the network simulator because it happens below
the MPI API level and does therefore not show up in the
diagrams presented here.

In many cases it is important to know what the actual
network traffic looks like, and future version of the network
simulator will be able to provide that. However, knowing
communication patterns at the algorithmic level is also im-
portant. The FT and IS examples show that they use col-
lective operations almost exclusively. We will see that in
more detail in Section 3.3. The graphs in Figure 6 and 7
also show that all of these collective operations originate
and terminate at node 0.

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

m

es
sa

ge
s

Destination Node

S
ou

rc
e

N
od

e

 0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

Figure 6. FT message density distribution

 0
 5
 10
 15
 20
 25
 30
 35

m

es
sa

ge
s

Destination Node

S
ou

rc
e

N
od

e

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60

Figure 7. IS message density distribution

The MD benchmark has a much more interesting mes-
sage density distribution pattern. Figures 8 and 9 show a
communication pattern similar to CG. Communication is
localized within groups of 4 nodes. However, MG exhibits a
larger pattern where the groups of 4 are themselves grouped
in clusters of 16 nodes. In addition, the long diagonal bands
indicate communication from each cluster to nodes in the
next lower cluster.

Finding inexpensive network topologies and connection
management schemes that best fit applications is difficult.
A network that works well for all-to-all communication pat-
terns is expensive.

The FT benchmark is usually considered to have an all-
to-all message density distribution. We have seen above that
this may be true depending on the implementation of MPI
and how it routes collective operations. However, algorith-
mically, FT performs only broadcast and reduce operations
with node 0 as the root. A specific topology and/or ded-
icated hardware for collective operations rooted at node 0
might benefit FT greatly. Good nearest neighbor commu-
nication would also help, if the broadcast and reduce algo-
rithm were implemented in a fan-out/fan-in tree that takes
advantage of that.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

m

es
sa

ge
s

Destination Node

S
ou

rc
e

N
od

e

 0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

Figure 8. MG message density distribution

 0
 100
 200
 300
 400
 500
 600

m

es
sa

ge
s

Destination Node

S
ou

rc
e

N
od

e

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60

Figure 9. MG message density distribution

Optimizing for nearest neighbor communication would
also help CG and MG. However, MG needs more. Although
it communicates in a clearly clustered fashion, it does com-
municate with more than just the nearest neighbors, and
the pattern is complex enough that an optimized solution
would, most likely, also support the all-to-all case well.

3.2 Data density distribution

The data density distribution is similar to the message
density distribution. Instead of counting messages, though,
we accumulate the number of bytes sent from one node
to another. This can be interesting and different from the
message density distribution. Some applications exchange
large size messages among some nodes, and large number
of messages among other nodes.

A more common case is where one node sends much
more data to another node, but only receives short acknowl-
edgments back. The number of messages exchanged is the
same, but the data flow is not. We can see an example of
this in Figures 10 and 11. They show the message density
distribution of the BT benchmark on 16 nodes and the data
density distribution of the same benchmark and run.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

m

es
sa

ge
s

Destination Node

S
ou

rc
e

N
od

e

 0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

Figure 10. BT message density distribution

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

m
eg

a
by

te
s

Destination Node

S
ou

rc
e

N
od

e

 0 2 4 6 8 10 12 14
 0

 2

 4

 6

 8

 10

 12

 14

Figure 11. BT data density distribution

3.3 Collectives and point-to-point

The idea of performing collective operations, such as
broadcasts or reductions, inside a NIC is appealing. The
nodes within the fan-out or fan-in tree usually perform very
simple operations, such as an addition or finding a maxi-
mum or minimum. Interrupting the host processor to exe-
cute such simple functions takes much more time than the
actual execution of these functions. Executing the functions
on the NIC, even on a fairly feeble NIC CPU, can improve
performance [10].

Off-loading collective operations onto the NIC does not
always make sense. NIC resources are scarce, and point-
to-point operations have to be high performance as well.
The ratio of point-to-point versus the number of collective
operations is therefore an important characteristic of an ap-
plication.

For the NAS parallel benchmarks, that ratio is not depen-
dent on the size of the benchmark. However, the ratio does
depend on the class of FT and MG. We show the ratio for
all eight benchmarks in Figure 12 running on 64 nodes.

The graph shows that the BT, CG, LU, and SP bench-
marks use point-to-point almost exclusively, while EP, FT,

0%

20%

40%

60%

80%

100%

A B
 BT

C A B
 CG

C A B
 EP

C A B
 FT

C A B
 IS

C A B
 LU

C A B
 MG

C A B
 SP

C

Benchmark on 64 nodes

pt2pt collectives

Figure 12. Collectives/point-to-point ratio

and IS make heavy use of collective operations. The MG
benchmark uses a few collectives; fewer with increasing
class size.

We count the total number of point-to-point messages
and divide by the number of nodes. Each collective op-
eration counts as one operation. We count both anMPI -
Bcast(), a fan-out, and anMPI Allreduce(), a fan-in and
a fan-out, as one operation.

3.4 Number and type of collectives

Once we know that an application uses collective oper-
ations, it is also important to know which ones are used.
Six of the MPI collective operations are used by the NAS
parallel benchmarks. Figure 13 shows that FT uses five of
them.MPI Alltoallv() is only used by IS. When we in-
crease the number of nodes used by FT, the use ofMPI -
Bcast() increases, while the use of the other collectives
remains constant. That is an indication that they are only
used at the beginning of the program to distribute initial-
ization data and at the end to gather results. BT, LU, MG,
and SP behave the same way: various collective operations
are used a small, fixed number of times, while the use of
the broadcast operation increases with the number of nodes.
The CG benchmark uses one reduce operation and one bar-
rier operation independent of size or class. EP uses four
MPI Allreduce() operations and oneMPI Barrier().
IS uses two reduce operations and eleven each ofMPI -
Allreduce(), MPI Alltoall(), andMPI Alltoallv().

Judging only by the NAS parallel benchmarks, it would
make sense to devote effort into providing an efficient and
fast broadcast operation, while other collectives are less im-
portant. It will be interesting to see whether that conclusion
holds for other benchmarks and real applications.

Each call to a collective operation generates an event

 0

 20

 40

 60

 80

 100

 120

 140

Reduce
Allreduce

Alltoall
Alltoallv

Barrier
Bcast

On 64 nodes
On 16 nodes
On 4 nodes

Figure 13. Collectives used by FT

inside the network simulator. We assign a different event
type to each type of collective operation and can easily keep
track of which ones are called by the application and how
often.

3.5 Message size distribution

The size of messages sent by an application is another
important characteristic. Many message-passing systems
have latency optimizations for shorter messages and try to
reach the highest achievable bandwidth with the smallest
message possible. Practical considerations make this a dif-
ficult task and designers have to make tradeoffs. Knowing
what size messages an application sends, can help with de-
cisions like choosing the packet size and buffer sizes inside
switches.

For most of the benchmarks, message sizes get smaller
the more nodes are used. Figure 14 shows this for SP, class
A. The total number of messages goes up with the number
of nodes used (but not the class of the benchmark). At 4
nodes, SP sends about 5,000 messages of length≤ 64 kB
and 15,000 of length≤ 16 kB. On 16 nodes it sends
96,000 of length≤ 16 kB, and 58,000 of length≤ 4 kB.
The trend continues on 64 nodes. At that size, SP sends
155,000 of length≤ 16 kB, 540,000≤ 4 kB, and 540,000
≤ 1 kB.

An exception to this behavior is EP which does not send
messages larger than 16 bytes. Another special case is IS,
which sends mostly messages no larger than 16 bytes and
some that are> 4 k KB and≤ 16 kB. MG is the only
one that sends messages of various sizes; the other bench-
marks send either very small messages, or much larger ones.
Presumably the smaller messages are synchronization mes-
sages, while the larger ones are used to exchange data.

We create a bucket for messages≤ 16 B, another bucket
for messages> 16 B and≤ 64 B, another for messages>
64 B but≤ 256 bytes, and so on. In all, there are thirteen

 10

 100

 1000

 10000

 100000

 1e+06

16
 B

64
 B

25
6 B

1k 4k 16
k

64
k

25
6k

1M 4M 16
M

64
M

25
6M

Hug
e

N
um

be
r o

f m
es

sa
ge

s

Message size

On 64 nodes
On 16 nodes
On 04 nodes

Figure 14. Message sizes used by SP

buckets to count the various message sizes.

4 Related work

The behavior of the NAS parallel benchmarks is fairly
well understood. They have been analyzed in the past with
different methodologies and emphasis on various aspects of
a parallel application. For example [11] looks at their scala-
bility and how the architecture of a ccNUMA machine and
a workstation cluster meet the requirements of the NAS par-
allel benchmarks. That paper does not evaluate the message
patterns described in Section 3.

Counting the number of MPI send and receive opera-
tions, and adding the number of bytes transmitted is rela-
tively easy, as [7] shows. For the experiments described in
that paper, print statements were inserted before each MPI
call. Of course, this greatly changes the timing, and possi-
bly the behavior, of the application and prevents any mea-
surements that are timing dependent (for example the com-
pute to communication ratio). The communication patterns
mentioned in [7] are the number of times the MPI functions
are called by the NAS parallel benchmarks, not the patterns
exhibited by the messages traversing the (logical) grid.

The term communication patterns is used in [2] in the
same sense as in the work presented here. For the use
of those patterns, the paper gives the example of pre-
establishing connections between only those nodes that ac-
tually communicate with each other. The paper also ana-
lyzes the message size distribution as we do in Section 3.5.

MPIP is an MPI profiling library that wraps MPI com-
munication calls in timers. Vetter and Yoo use MPIP in [9]
to measure how much time is spent communicating. They
also use MPIP to gather MPI tracing information. They
have to do so judiciously because the trace data has to be

written to disk which perturbs the application. The tracing
information contains the data to create a message density
distribution graph like we present in Section 3.1. A similar
approach is used in [8] to look at message data distribution
and message size distribution.

All of these experiments have one or more of the follow-
ing drawbacks:

1. a large and extensive effort to instrument the applica-
tion,

2. the almost impossible task of keeping the running ap-
plication as unperturbed as possible,

3. a reduction in the amount of memory available to the
application so trace data can be stored, and

4. a language specific measuring tool. In [4], for exam-
ple, the NAS parallel benchmarks were rewritten in C.

There have been efforts, such as [6] that account for the
overhead introduced by the measuring tool. The work in [6]
is interesting because it makes use of the MPI profiling in-
terface and attempts to compensate for measurement over-
head as it occurs; not simply adjusting the total execution
time. We belive that our approach is more precise, although
we have not yet shown that.

The work we describe in this paper shows that the same
measurements can be done with no real change to the ap-
plication and no perturbation to its message-passing timing
and behavior. This is because we combine the aspects of a
simulator with the properties of a profiling tool.

5 Summary and future work

We have introduced a novel tool that lets us collect com-
munication pattern information from an application. The
tool, a combination of a network simulator and profiling
method, runs on a separate node and does therefore not
take away any memory from an application node. It is also
independent of the language the application is written in:
the NAS parallel benchmarks we used to demonstrate the
tool are written in C and Fortran. A one-line change to the
source code of the application is needed to link it with our
simulator.

A further important aspect of this new way to gather
message-passing data, is that the virtual time of the appli-
cation is not changed. Our benchmarks reported the same
execution time whether run together with our simulator or
alone.

We grouped the data we collected into five categories:
message density distribution, data density distribution, col-
lectives versus point-to-point, and number and type of col-
lectives. We presented interesting examples in each cate-
gory in an easy to understand format. The complete set is
available in [5]

For each category we briefly described why that infor-
mation gives hardware designers the information they need
to create network topologies and network interfaces that are
best suited for these benchmarks and the class of applica-
tions they represent. The patterns give system software de-
signers the information they need to optimally allocate and
number nodes, and optimize for specific message lengths
and type of collective operations.

In the future, we will make the simulator itself parallel.
The simulation would then run onn+m nodes;n nodes for
the application, andmnodes for the network simulator. The
current version increases the wall clock time of the appli-
cation because for each message there are two events that
travel across the network. Later, when the simulator takes
the network topology and possible congestion into account,
more nodes will help running the simulation faster.

Even the current prototype lets us adjust the message de-
lay (∆ in Section 2). For example, we could simulate a net-
work with zero latency. Once we have confirmed that our
virtual time algorithm works correctly, we will be able to
show application behavior under different network charac-
teristics, do intrusion-free MPI tracing, and conduct studies
about what would happen, if collectives were done in hard-
ware.

Acknowledgments

George Riley, Georgia Tech, has helped a lot by teach-
ing me about parallel discrete event simulation and helping
shape ideas for the supercomputer simulation project. Many
thanks go to Arun Rodriguez for several insightful discus-
sions. I would also like to thank Keith Underwood for sug-
gesting the supercomputer simulation project, and the other
team members, Ron Brightwell and Jim Tomkins, for their
helpful comments.

References

[1] D. Bailey, T. Harris, W. Saphir, R. V. der Wigngaart, A. Woo,
and M. Yarrow. The NAS parallel benchmarks 2.0. Tech-
nical Report NAS-95-020, NASA Ames Research Center,
Dec. 1995.

[2] A. Faraj and X. Yuan. Communication characteristics in the
NAS parallel benchmarks. InParallel and Distributed Com-
puting and Systems (PDCS), pages 724–729, Nov. 2002.

[3] D. R. Jefferson. Virtual time.ACM Trans. Program. Lang.
Syst., 7(3):404–425, 1985.

[4] S. Prakash and R. L. Bagrodia. MPI-SIM: using parallel
simulation to evaluate MPI programs. InWSC ’98: Pro-
ceedings of the 30th conference on Winter simulation, pages
467–474, 1998.

[5] R. Riesen. Communication patterns of the NAS parallel
benchmarks.http://www.cs.sandia.gov/~rolf/NAS,
Jan. 2006.

[6] S. Shende, A. D. Malony, A. Morris, and F. Wolf. Perfor-
mance profiling overhead compensation for MPI programs.
In B. D. Martino, D. Kranzlm̈uller, and J. Dongarra, editors,
Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 9th European PVM/MPI Users’ Group
Meeting, Sorrento, Italy, September 18 - 21, 2005. Proceed-
ings, volume 3666 ofLecture Notes in Computer Science,
pages 359–367. 2005.

[7] T. B. Tabe and Q. F. Stout. The use of the MPI communi-
cation library in the NAS parallel benchmarks. Technical
Report CSE-TR-386-99, The University of Michigan, 1999.

[8] J. S. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster
architectures. InProceedings of the International Parallel
and Distributed Processing Symposium (IPDPS), 2002.

[9] J. S. Vetter and A. Yoo. An empirical performance evalua-
tion of scalable scientific applications. InSupercomputing
’02: Proceedings of the 2002 ACM/IEEE conference on Su-
percomputing, 2002.

[10] A. Wagner, H.-W. Jin, D. K. Panda, and R. Riesen. NIC-
based offload of dynamic user-defined modules for Myrinet
clusters. InIEEE Cluster Computing 2004, Sept. 2005.

[11] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E.
Culler. Architectural requirements and scalability of the
NAS parallel benchmarks. InSupercomputing ’99 Proceed-
ings, 1999.

